Mpeg Suppliers USA

Find where to buy products from suppliers in the USA, including: distributors, industrial manufacturers in America, bulk supplies and wholesalers of raw ingredients & finished goods.

Search for products or services, then visit the American suppliers website for prices, SDS or more information. You can also view suppliers in Australia, NZ or the UK.

Product
mPEG10K-Propionaldehyde Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Propionaldehyde, mPEG-ALD, Methoxy-PEG-Propionaldehyde. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
mPEG10K-Succinimidyl Carboxymethyl Ester Methoxy PEG NHS Ester (SCM PEG). Amine reactive PEG towards the amino groups of lysine(s) on proteins or other biologics; reaction occurs at room temperature in <1hr at pH 7-8. Stable linker between PEG and NHS ester. Uses: S may include: bioconjugation, drug delivery, peg hydrogel, crosslinker, and surface functionalization. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
mPEG12-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Materials 5
mPEG12-Azide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 12000. Alfa Chemistry Materials 5
mPEG12-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 559.7g/mol. Mole weight: C25H53NO12. COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC CN. InChI= 1S / C25H53NO12 / c1-27-4-5-29-8-9-31-12-13-33-16-17-35 -20-21-37-24-25-38-23-22-36-19-18-34- 15-14-32-11-10-30-7-6-28-3-2-26 / h2-26H… Alfa Chemistry Materials 5
mPEG12-OH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG12-Hydroxyl. Product ID: 2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanol. Molecular formula: 560.7g/mol. Mole weight: C25H52O13. [H]OCCOC. 1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3. XNWFRZJHXBZDAG-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG12-Propionic acid Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG12-PA, methoxy-PEG-Propionic acid. OC(CCOCCOC)=O. 1S/C6H12O4/c1-9-4-5-10-3-2-6 (7)8/h2-5H2, 1H3, (H, 7, 8). KWMXBFIAGYXCCC-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG12-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanethiol. Molecular formula: 576.7g/mol. Mole weight: C25H52O12S. COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC CS. InChI= 1S / C25H52O12S / c1-26-2-3-27-4-5-28-6-7-29-8-9-30-10- 11-31-12-13-32-14-15-33-16-17-34-18-1 9-35-20-21-36-22-23-37-24-25-38 / h38H, … Alfa Chemistry Materials 5
mPEG16-NH2 mPEG16-NH2. Group: Polymers. CAS No. 907577-50-8. Product ID: 2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 735.9g/mol. Mole weight: C33H69NO16. COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC COCCOCCOCCOCCN. InChI= 1S / C33H69NO16 / c1-35-4-5-37-8-9-39-12-13-41-16-17-43 -20-21-45-24-25-47-28-29-49-32-33-50- 31-30-48-27-26-46-23-22-44-19-18-42-1 5-14-40-11-10-38-7-6-36-3-2-34 / h2-34H2, 1H3. AZTFEVBTZHBNCX-UHFFFAOYSA-N. Alfa Chemistry Materials 4
mPEG2000C-DMG Synonyms: α - (3'-{[1, 2-di (myristyloxy) propanoxy]carbonylamino}propyl) -ω -methoxy, polyoxyethylene. Grades: >97%. CAS No. 1019000-64-6. Molecular formula: (C2H4O)nC36H73NO5. BOC Sciences 9
MPEG-2000-DSPE MPEG-2000-DSPE was used to study stability and biodistribution and toxicity of lung-specific liposomal antitubercular drugs. Group: Biochemicals. Grades: Highly Purified. CAS No. 147867-65-0. Pack Sizes: 100mg, 250mg. Molecular Formula: (C2H4O)nC43H84NO10P. US Biological Life Sciences. USBiological 1
Worldwide
mPEG20K-MAL Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-MAL, Methoxy-PEG-Maleimide. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
mPEG20K-Silane Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
mPEG20K-Succinimidyl Carboxymethyl Ester Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
mPEG2K-MAL Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-MAL, Methoxy-PEG-Maleimide. Molecular formula: average Mn 2000. Alfa Chemistry Materials 5
mPEG2k-PLA2k-PAE9k mPEG2k-PLA2k-PAE9k. Synonyms: methoxy polyethylene glycol-Poly(D,L-lactide)-Poly(b-amino esters). Product ID: MSMN-057. Category: Raw Materials. CD Formulation
mPEG2K-Thioctic acid Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 2000. Alfa Chemistry Materials 5
mPEG30K-Succinimidyl Carboxymethyl Ester Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 30000. Alfa Chemistry Materials 5
MPEG ~350 (Methoxypolyethylene Glycol) Methoxypolyethylene Glycol of with an average molecular mass of 350. Methoxypolyethylene Glycol (MPEG) is used in various applications such as micelles for drug delivery as well as in modifications of therapeutic proteins to improve their pharmacokinetics. Group: Biochemicals. Grades: Highly Purified. CAS No. 9004-74-4. Pack Sizes: 50g, 100g. Molecular Formula: CH3O(CH2CH2O)nH, Molecular Weight: US Biological Life Sciences. USBiological 2
Worldwide
mPEG40K-MAL Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-MAL, Methoxy-PEG-Maleimide. Molecular formula: average Mn 40000. Alfa Chemistry Materials 5
mPEG40K-Succinimidyl Carboxymethyl Ester Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 40000. Alfa Chemistry Materials 5
mPEG5-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Materials 5
mPEG5-Azide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Alkyne Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Alkyne, Methoxy-PEG-Alkyne. Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Hydrazide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG-HZ, mPEG-Hydrazide. Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Isocyanate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Isocyanate. Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Phosphate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Propionaldehyde Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Propionaldehyde, mPEG-ALD, Methoxy-PEG-Propionaldehyde. Molecular formula: average Mn 5000. Alfa Chemistry Materials 5
mPEG5K-Silane Methoxy PEG silanes are used for surface modification and deactivation of glass or silica. Uses: Bioconjugation, drug delivery, peg hydrogels, crosslinkers, and surface functionalization. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Silane. Molecular formula: average Mn 5,000. Alfa Chemistry Materials 5
mPEG5-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanamine. Molecular formula: 251.32g/mol. Mole weight: C11H25NO5. COCCOCCOCCOCCOCCN. InChI= 1S / C11H25NO5 / c1-13-4-5-15-8-9-17-11-10-16-7-6-14-3 -2-12 / h2-12H2, 1H3. WGQYVGMCDPUCEJ-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG5-OH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanol. Molecular formula: 252.3g/mol. Mole weight: C11H24O6. COCCOCCOCCOCCOCCO. InChI= 1S / C11H24O6 / c1-13-4-5-15-8-9-17-11-10-16-7-6-14-3 -2-12 / h12H, 2-11H2, 1H3. SLNYBUIEAMRFSZ-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG5-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanethiol. Molecular formula: 268.37g/mol. Mole weight: C11H24O5S. COCCOCCOCCOCCOCCS. InChI= 1S / C11H24O5S / c1-12-2-3-13-4-5-14-6-7-15-8-9-16-10- 11-17 / h17H, 2-11H2, 1H3. PNMCHSOJDWEEKK-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG6-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Materials 5
mPEG6-Azide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: imino- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethylimino] azanium. Molecular formula: average Mn 6000. Mole weight: C13H28N3O6+. COCCOCCOCCOCCOCCOCCN=[N+]=N. InChI= 1S / C13H28N3O6 / c1-17-4-5-19-8-9-21-12-13-22-11-10-20 -7-6-18-3-2-15-16-14 / h14H, 2-13H2, 1H3 / q + 1. KZFRTKCDHGYEIH-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG6-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 295.37g/mol. Mole weight: C13H29NO6. COCCOCCOCCOCCOCCOCCN. InChI= 1S / C13H29NO6 / c1-15-4-5-17-8-9-19-12-13-20-11-10-18 -7-6-16-3-2-14 / h2-14H2, 1H3. JDTWBXXBTWYNAT-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG6-OH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG6-Hydroxyl. Product ID: 2-[2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethoxy]ethanol. Molecular formula: 296.36g/mol. Mole weight: C13H28O7. [H]OCCOC. 1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3. XNWFRZJHXBZDAG-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG6-Propionic acid Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 3- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] propanoic acid. Molecular formula: 368.42g/mol. Mole weight: C16H32O9. COCCOCCOCCOCCOCCOCCOCCC(=O)O. InChI= 1S / C16H32O9 / c1-19-4-5-21-8-9-23-12-13-25-15-14-24 -11-10-22-7-6-20-3-2-16 (17) 18 / h2-15H2, 1H3, (H, 17, 18). NOPQIPMESCUIHH-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG6-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethanethiol. Molecular formula: 312.42g/mol. Mole weight: C13H28O6S. COCCOCCOCCOCCOCCOCCS. InChI= 1S / C13H28O6S / c1-14-2-3-15-4-5-16-6-7-17-8-9-18-10- 11-19-12-13-20 / h20H, 2-13H2, 1H3. FCNSUDTWFXNQBG-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG7-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Materials 5
mPEG7-Azide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 7000. Alfa Chemistry Materials 5
mPEG7-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 339.42g/mol. Mole weight: C15H33NO7. COCCOCCOCCOCCOCCOCCOCCN. InChI= 1S / C15H33NO7 / c1-17-4-5-19-8-9-21-12-13-23-15-14-22 -11-10-20-7-6-18-3-2-16 / h2-16H2, 1H3. IQQSLHPGFFGOJW-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG7-OH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG7-Hydroxyl. Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanol. Molecular formula: 340.41g/mol. Mole weight: C15H32O8. [H]OCCOC. 1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3. XNWFRZJHXBZDAG-UHFFFAOYSA-N. Alfa Chemistry Materials 5
mPEG7-Propionic acid Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 3- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] propanoic acid. Molecular formula: 412.5g/mol. Mole weight: C18H36O10. COCCOCCOCCOCCOCCOCCOCCOCCC(=O)O. InChI= 1S / C18H36O10 / c1-21-4-5-23-8-9-25-12-13-27-16-17-28 -15-14-26-11-10-24-7-6-22-3-2-18 (19) 20 / h2-17H2, 1H3, (H, 19, 20). JHUSQXBQANBSDC-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG7-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanethiol. Molecular formula: 356.5g/mol. Mole weight: C15H32O7S. COCCOCCOCCOCCOCCOCCOCCS. InChI= 1S / C15H32O7S / c1-16-2-3-17-4-5-18-6-7-19-8-9-20-10- 11-21-12-13-22-14-15-23 / h23H, 2-15H2, 1H3. PVSKDHZQTUFAEZ-UHFFFAOYSA-N.… Alfa Chemistry Materials 5
mPEG-AA According to public information, mPEG-AA (mPEG-CM) is one of the excipients of Pfizer's and Moderna's COVID-19 vaccine. Product ID: PE-0343. Category: Excipients. Product Keywords: Pharmaceutical Excipients; Excipients; mPEG-AA; PE-0343. Sample Provided: Yes. Standard: In-house standard. Grade: Pharmaceutical grade. CD Formulation
mPEG-alginate mPEG-alginate,methoxypolyethylene glycol-alginate is an AB block copolymer,Chitosan is a Natural polysaccharide can be used for drug delivery systems. Synonyms: methoxy polyethylene glycol-alginate. Product ID: MSMN-054. Category: Raw Materials. CD Formulation
mPEG-amine (MW 2000) mPEG-amine (mPEG-NH2) (MW 2000) is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs [1]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-NH2 (MW 2000). CAS No. 80506-64-5. Pack Sizes: 50 mg; 100 mg. Product ID: HY-140676. MedChemExpress MCE
mPEG-amine (MW 5000) mPEG-amine (mPEG-NH2) (MW 5000) is a modifier that can replace the sulfonic acid portion of the dye molecule to increase the water solubility of long-wavelength voltage-sensitive dyes (VSD) or Pittsburgh (PGH) dyes. mPEG-amine can also form amide bonds with carboxyl groups on the surface of microspheres under the mediation of EDC and Sulfo-NHS to form a PEG coating on the surface of fluorescent microspheres for large-scale rotational cytoplasmic flow studies [1] [2]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-NH2 (MW 5000). CAS No. 80506-64-5. Pack Sizes: 100 mg; 250 mg. Product ID: HY-140677. MedChemExpress MCE
mPEG-b-PLA (2k-5k) mPEG-b-PLA is a biodegradable diblock copolymer. Synonyms: Methoxy poly(ethylene glycol)-b-poly(D,L-lactide). Product ID: MSMN-087. Category: Raw Materials. CD Formulation
mPEG-b-PLA (2k-5k) mPEG-b-PLA is a biodegradable diblock copolymer. Uses: Msmn-087. Synonyms: Methoxy poly(ethylene glycol)-b-poly(D,L-lactide). Grades: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 2,000, PLGA Mn 10,000) mPEG-b-PLGA (PEG Mn 2,000, PLGA Mn 10,000). Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-039. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 2,000, PLGA Mn 11,500) Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-036. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 2,000, PLGA Mn 3,000) mPEG-b-PLGA (PEG Mn 2,000, PLGA Mn 3,000). Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-040. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 2,000; PLGA Mn 4,500) Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-034. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 10,000) Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-042. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 15,000) Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-041. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 20,000) Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-035. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 5,000) Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-038. Category: Raw Materials. CD Formulation
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 7,000) Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-037. Category: Raw Materials. CD Formulation
Mpeg bromoisobutyrate Mpeg bromoisobutyrate. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: ATRP initiator; mPEG bromoisobutyrate; PEG methyl ether bromoisobutyrate; Poly(ethylene glycol) methyl ether 2-bromoisobutyrate; mPEG bromoisobutyrate 1000; PEG methyl ether bromoisobutyrate 1000; methoxyPolyethylene glycol bromoisobutyryl; mPEG ATRP. CAS No. 245070-97-7. Alfa Chemistry Materials 6
mPEG-Chitosan mPEG-Chitosan,methoxypolyethylene glycol-Chitosan is an AB block copolymer,Chitosan is a Medicinal polysaccharide polymer can be used for drug delivery systems. Synonyms: methoxy polyethylene glycol-Chitosan. Product ID: MSMN-053. Category: Raw Materials. CD Formulation
mPEG-DMG mPEG-DMG. Product ID: PE-0344. Category: Excipients. Product Keywords: Pharmaceutical Excipients; Excipients; mPEG-DMG; PE-0344. Sample Provided: Yes. Standard: In-house standard. Grade: Pharmaceutical grade. CD Formulation
Mpeg-dspe Phosphatidylglycerol Series. Alternative Names: 1,2-Distearoyl-sn-glycero-3-phosphorylglycerol sodium salt. CAS No. 124011-52-5. Molecular formula: C42H82NaO10P. Mole weight: 801.1. Purity: 98%+. IUPACName: Sodium;2,3-dihydroxypropyl 2,3-di(octadecanoyloxy)propyl phosphate. Canonical SMILES: CCCCCCCCCCCCCCCCCC (=O)OCC (COP (=O) ([O-])OCC (CO)O)OC (=O)CCCCCCCCCCCCCCCCC. [Na+]. Catalog: ACM124011525. Alfa Chemistry. 5
MPEG-maleimide MPEG-maleimide. Group: Polyethylene (pe). CAS No. 99126-64-4. Molecular formula: ~5000. Mole weight: CH3O(C2H4O)n+1-CH2CH2 -C4H2NO2. Alfa Chemistry Materials 3
mPEG-PCL-PPEEA PCL has good compatibility and good solvent solubility,especially in aromatic compounds,ketones and polar solvents.It is widely used in controlled release drug carrier,cell and tissue culture medium. Synonyms: methoxy polyethylene glycol-Poly(ε-caprolactone)-PPEEA. Product ID: MSMN-063. Category: Raw Materials. CD Formulation
mPEG-PLA-PPEEA Polylactic acid (PLA) is a kind of non-toxic,non irritating synthetic polymer material with excellent biodegradability,compatibility and absorbability.It can be used as drug transport material and tissue engineering scaffold material. Synonyms: methoxy polyethylene glycol-Poly(D,L-lactide)-PPEEA. Product ID: MSMN-064. Category: Raw Materials. CD Formulation
mPEG-PLGA mPEG-PLGA is a mucus-penetrating polymer. mPEG-PLGA is a raw material to prepare nanomedicine [1]. Uses: Scientific research. Group: Signaling pathways. CAS No. 743423-15-6. Pack Sizes: 5 mg; 10 mg. Product ID: HY-164077. MedChemExpress MCE
18:0 mPEG2000 PE sodium 18:0 mPEG2000 PE sodium can be used for the preparation of stabilized nucleic acid-lipid particllipid particles (SNALPs). SNALPs represent some of the earliest and best functional siRNA-ABC nanoparticles described [1]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: DSPE-mPEG2000 sodium; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] sodium. CAS No. 247925-28-6. Pack Sizes: 5 mg; 10 mg; 25 mg; 50 mg; 100 mg. Product ID: HY-112760. MedChemExpress MCE
DPPE-mPEG DPPE-mPEG is a phospholipid containing a polyether unit. It can be used for PEG-biochemical conjugation, and be utilized in micelles, liposomes, and other lipid-based drug carriers. Synonyms: N-(Carbamoyl-methoxypolyethylene glycol)-1,2-dipalmitoyl-cephalin; N-(Carbonyl-methoxypolyethylenglycol)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine, Carbonyl-methoxypolyethylenglycol labeled; Poly(oxy-1,2-ethanediyl), α-[(9R)-6-hydroxy-6-oxido-1,12-dioxo-9-[(1-oxohexadecyl)oxy]-5,7,11-trioxa-2-aza-6-phosphaheptacos-1-yl]-ω-methoxy-. Grades: >95%. CAS No. 205494-72-0. Molecular formula: (C2H4O)nC39H76NO10P. Mole weight: 794.0. BOC Sciences 9
DSPE-mPEG DSPE-mPEG is a phospholipid containing a polyether unit. It can be used for PEG-biochemical conjugation, and be utilized in micelles, liposomes, and other lipid-based drug carriers. It is used to study the stability, biodistribution and toxicity of lung-specific liposome anti-tuberculosis drugs. Synonyms: Poly(oxy-1,2-ethanediyl), α-[6-hydroxy-6-oxido-1,12-dioxo-9-[(1-oxooctadecyl)oxy]-5,7,11-trioxa-2-aza-6-phosphanonacos-1-yl]-ω-methoxy-; 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)]; N-(Carbonyl-methoxypolyethylenglycol)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine, Carbonyl-methoxypolyethylenglycol labeled; N-(Carbamoyl-methoxy peg)-1,2-distearoyl-cephalin; Poly(oxy-1,2-ethanediyl), alpha-((9R)-6-hydroxy-6-oxido-1,12-dioxo-9-((1-oxooctadecyl)oxy)-5,7,11-trioxa-2-aza-6-phosphanonacos-1-yl)-omega-methoxy-; α-[6-Hydroxy-6-oxido-1,12-dioxo-9-[(1-oxooctadecyl)oxy]-5,7,11-trioxa-2-aza-6-phosphanonacos-1-yl]-ω-methoxy-Poly(oxy-1,2-ethanediyl). Grades: >99% by HPLC. CAS No. 147867-65-0. Molecular formula: (C2H4O)nC43H84NO10P. Mole weight: 872.1. BOC Sciences 9

Would you like to list your products on USA Chemical Suppliers?

Our database is helping our users find suppliers everyday.

Add Your Products