A directory of where to buy chemicals in the USA, including: distributors, industrial manufacturers, bulk supplies and wholesalers of raw ingredients & finished goods.
8-Aminoquinoline is a biochemical reagent that can be used as a biological material or organic compound for life science related research. Uses: Scientific research. Group: Biochemical assay reagents. CAS No. 578-66-5. Pack Sizes: 5 g; 10 g. Product ID: HY-W007317.
8-Aminoquinoline, 98%. Uses: 8-aminoquinoline has been used in: preparation of base-stabilized terminal borylene complex of osmium spectrophotometric determination of bivalent palladium. Additional or Alternative Names: DTXSID4060369; AN-21475; AC1Q51CD; A3000/0126362; 8-amino quinoline; PS-5383; PubChem7574; quinolin-8-yl-amine; RTC-062235; AB00375631-02. Product Category: Quinolines. CAS No. 578-66-5. Molecular formula: C9H8N2. Mole weight: 144.177g/mol. IUPACName: quinolin-8-amine. Canonical SMILES: C1=CC2=C(C(=C1)N)N=CC=C2. ECNumber: 209-427-9. Product ID: ACM578665. Alfa Chemistry ISO 9001:2015 Certified.
8-Aminoquinoline N-Oxide
8-Aminoquinoline N-Oxide. Uses: Designed for use in research and industrial production. Additional or Alternative Names: 8-Aminoquinoline N-Oxide, 92339-84-9, 8-Aminoquinoline, 1-oxide, ACMC-209rfg, AC1LC5RI, 1-Oxido-8-quinolinylamine, SureCN4136722, 1-oxidoquinolin-1-ium-8-amine, CTK5H1167, ANW-39818, AKOS015854666, AG-L-25103. Product Category: Heterocyclic Organic Compound. CAS No. 92339-84-9. Molecular formula: C9H8N2O. Mole weight: 160.17. Purity: >98.0%(GC)(T). IUPACName: 1-oxidoquinolin-1-ium-8-amine. Canonical SMILES: C1=CC2=C(C(=C1)N)[N+](=CC=C2)[O-]. Density: 1.27g/cm³. Product ID: ACM92339849. Alfa Chemistry ISO 9001:2015 Certified.
8-Aminospiro[4.5]decane hydrochloride
8-Aminospiro[4.5]decane hydrochloride. Uses: Designed for use in research and industrial production. Additional or Alternative Names: 8-Aminospiro[4.5]decane hydrochloride. Product Category: Heterocyclic Organic Compound. CAS No. 3643-12-7. Molecular formula: C10H20ClN. Mole weight: 189.7255. Product ID: ACM3643127. Alfa Chemistry ISO 9001:2015 Certified. Categories: Spiro[4.5]decan-8-amine hydrochloride.
8-Anilino-1-naphthalenesulfonic acid
8-Anilino-1-naphthalenesulfonic acid. Group: Biochemicals. Grades: Highly Purified. CAS No. 82-76-8. Pack Sizes: 100g, 250g, 500g, 1kg, 2kg. Molecular Formula: C16H13NO3S. US Biological Life Sciences.
Worldwide
8-Anilino-1-naphthalenesulfonic acid (Phenyl peri acid)
25g Pack Size. Group: Amines, Building Blocks, Organics, Stains & Indicators. Formula: C6H5NHC10H6SO3H. CAS No. 82-76-8. Prepack ID 12709547-25g. Molecular Weight 299.34. See USA prepack pricing.
8-anti-Ipratropium Bromide
8-anti-Ipratropium Bromide. Uses: For analytical and research use. Group: Impurity standards. Alternative Names: 8-Azoniabicyclo[3.2.1]octane, 3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-, bromide (1:1), (3-endo,8-anti)-, 8-Azoniabicyclo[3.2.1]octane, 3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-, bromide, (3-endo,8-anti)- (9CI). CAS No. 58073-59-9. Molecular Formula: C20H30NO3.Br. Mole Weight: 412.36. Catalog: APS58073599. Format: Neat.
8'-Apo-b-carotenal
8'-Apo-b-carotenal. Group: Biochemicals. Alternative Names: 8'-Apo-b-caroten-8'-al. Grades: Highly Purified. Pack Sizes: 1mg, 2mg, 5mg. US Biological Life Sciences.
Worldwide
8'-apo-β-carotenoid 14',13'-cleaving dioxygenase
A thiol-dependent enzyme isolated from rat and rabbit. Unlike EC 1.13.11.63, β-carotene-15,15'-dioxygenase, it is not active towards β-carotene. The secondary product has not been characterized, but may be (3E,5E)-7-hydroxy-6-methylhepta-3,5-dien-2-one. Group: Enzymes. Synonyms: 8'-apo-β-carotenol:O2 oxidoreductase (14',13'-cleaving). Enzyme Commission Number: EC 1.13.11.67. CAS No. 198028-39-6. Storage: Store it at +4 ?C for short term. For long term storage, store it at -20 ?C?-80 ?C. Form: Liquid or lyophilized powder. EXWM-0587; 8'-apo-β-carotenoid 14',13'-cleaving dioxygenase; EC 1.13.11.67; 198028-39-6; 8'-apo-β-carotenol:O2 oxidoreductase (14',13'-cleaving). Cat No: EXWM-0587.
8'-apo-carotenoid 13,14-cleaving dioxygenase
Isolated from the bacterium Novosphingobium aromaticivorans. It is less active with 4'-apo-β-carotenal and γ-carotene. Group: Enzymes. Synonyms: NACOX1 (gene name). Enzyme Commission Number: EC 1.13.11.82. Storage: Store it at +4 ?C for short term. For long term storage, store it at -20 ?C?-80 ?C. Form: Liquid or lyophilized powder. EXWM-0603; 8'-apo-carotenoid 13,14-cleaving dioxygenase; EC 1.13.11.82; NACOX1 (gene name). Cat No: EXWM-0603.
8-APT-cGMP
8-APT-cGMP is an isozyme-selective stimulator of cGMP-dependent protein kinase I a with a prenference for type I a over I by a factor of 200. Synonyms: 8- (2- Aminophenylthio)guanosine- 3', 5'- monophosphate, sodium salt. Grades: ≥ 98% by HPLC. CAS No. 144509-87-5. Molecular formula: C16H16N6O7PS · Na. Mole weight: 490.4.
8arm-PEG10K 7arm-OH, 1arm-COOH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 10000.
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG 7arm-OH, 1arm-COOH, tripentaerythritol core, 8arm PEG, 7arm-Hydroxyl, 1arm-Carboxyl. Molecular formula: average Mn 10000.
8arm-PEG10K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 10000.
8arm-PEG10K-Acrylate, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: 3d printing materials poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-ACLT, 8arm-PEG-Acrylate, tripentaerythritol core. Molecular formula: average Mn 10000.
8arm-PEG10K-COOH, hexaglycerol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-COOH, hexaglycerol core, 8arm-PEG-COOH. Molecular formula: average Mn 10000.
8arm-PEG10K-COOH, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-COOH, tripentaerythritol core, 8arm-PEG-COOH. Molecular formula: average Mn 10000.
8arm-PEG10K-Maleimide
8arm-PEG10K-Maleimide. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8-arm PEG10K-Methacrylate (hexaglycerol core)
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 10000.
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 10000.
8arm-PEG10K-NH2, hexaglycerol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-NH2, hexaglycerol core, 8arm-PEG-NH2. Molecular formula: average Mn 10000.
8arm-PEG10K-NH2, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-NH2, 8arm-PEG-NH2, tripentaerythritol core. Molecular formula: average Mn 10000.
8-arm PEG10K-PCL2K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8-arm PEG10K-PLA2K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG10K-SH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-SH. Molecular formula: average Mn 10000.
8arm-PEG10K-SH, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-SH, tripentaerythritol core, 8arm-PEG-SH. Molecular formula: average Mn 10000.
8arm-PEG10K-Succinimidyl Glutarate
8arm-PEG10K-Succinimidyl Glutarate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG10K-Succinimidyl Succinate
8arm-PEG10K-Succinimidyl Succinate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG10K-Vinylsulfone, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-VS, 8arm-PEG-Vinylsulfone, tripentaerythritol core. Molecular formula: average Mn 10000.
8arm-PEG15K-Succinimidyl Glutarate
8arm-PEG15K-Succinimidyl Glutarate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG15K-Succinimidyl Succinate
8arm-PEG15K-Succinimidyl Succinate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG20K 7arm-OH, 1arm-COOH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 20000.
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG 7arm-OH, 1arm-COOH, tripentaerythritol core, 8arm PEG, 7arm-Hydroxyl, 1arm-Carboxyl. Molecular formula: average Mn 20000.
8arm-PEG20K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-Acrylate, hexaglycerol core. Molecular formula: average Mn 20000.
8arm-PEG20K-Acrylate, hexaglycerol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: 3d printing materials poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-Acrylate, hexaglycerol core. Molecular formula: average Mn 20000.
8arm-PEG20K-COOH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-COOH. Molecular formula: average Mn 20000.
8arm-PEG20K-COOH, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-COOH, tripentaerythritol core, 8arm-PEG-COOH. Molecular formula: average Mn 20000.
8arm-PEG20K-Maleimide
8arm-PEG20K-Maleimide. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG20K-NH2, hexaglycerol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-NH2, hexaglycerol core, 8arm-PEG-NH2. Molecular formula: average Mn 20000.
8arm-PEG20K-NH2, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-NH2, 8arm-PEG-NH2, tripentaerythritol core. Molecular formula: average Mn 20000.
8arm-PEG20K-Norbornene, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-Norbornene, tripentaerythritol core, 8arm-PEG-NB. Molecular formula: average Mn 20000.
8arm-PEG20K-SH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-SH. Molecular formula: average Mn 20000.
8arm-PEG20K-SH, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-SH, tripentaerythritol core, 8arm-PEG-SH. Molecular formula: average Mn 20000.
8arm-PEG20K-Succinimidyl Glutarate
8arm-PEG20K-Succinimidyl Glutarate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG20K-Succinimidyl Succinate
8arm-PEG20K-Succinimidyl Succinate. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8arm-PEG20K-Vinylsulfone, tripentaerythritol core
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-VS, 8arm-PEG-Vinylsulfone, tripentaerythritol core. Molecular formula: average Mn 20000.
8arm-PEG40K-COOH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-COOH. Molecular formula: average Mn 40000.
8arm-PEG40K-Maleimide
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-Maleimide. Molecular formula: average Mn 40000.
8arm-PEG40K-NH2
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 8arm-PEG-NH2. Molecular formula: average Mn 40000.
8arm-PEG40K-Succinimidyl Glutarate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 40000.
8arm-PEG40K-Succinimidyl Succinate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 40000.
8-arm PEG5K-Acrylate (hexaglycerol core)
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
8-arm PEG5K-Acrylate (tripentaerythritol core)
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
8-arm PEG5K-Methacrylate (hexaglycerol core)
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
8-arm PEG5K-PCL1K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
8-arm PEG5K-PLA1K-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). ≥95%.
8-Arm PEG-DBCO
8-Arm PEG-DBCO. Uses: Designed for use in research and industrial production. Purity: 0.9. Product ID: ACMA00006129. Alfa Chemistry ISO 9001:2015 Certified.
8-Aza-2,6-diaminopurine sulfate
8-Aza-2,6-diaminopurine sulfate. Group: Biochemicals. Grades: Highly Purified. CAS No. 65591-11-9. Pack Sizes: 1g, 5g, 10g. Molecular Formula: C4H5N7·O4S. US Biological Life Sciences.
Worldwide
8-Aza-2'-beta-C-methylguanosine
8-Aza-2'-beta-C-methylguanosine: One compound, with a rather intricate name - 8-Aza-2'-beta-C-methylguanosine, finds significant application in the biomedical sector for research and development. In fact, scientists readily exploit its synthetic forerunner role while manufacturing a range of antiviral medications targeting RNA viruses, an area of paramount importance. Its unmatched constitution and characteristics render it an indispensable asset in the realm of drug exploration and medicinal chemistry, fostering the battle against debilitating viral afflictions. Grades: ≥95%. Molecular formula: C10H14N6O5. Mole weight: 298.26.
8-Aza-2'-deoxyadenosine
8-Aza-2'-deoxyadenosine, a potent compound widely employed in the biomedical sector, exhibits immense potential for the treatment of diverse malignancies, notably leukemia and lymphoma. Its efficacy lies in its ability to impede DNA and RNA synthesis, culminating in the robust suppression of tumor proliferation. As a pivotal research asset, this nucleoside analog enables in-depth elucidation of oncogenic mechanisms and facilitates the innovative formulation of therapeutic interventions. Molecular formula: C9H12N6O3. Mole weight: 252.23.
8-Aza-5'-AMP
8-Aza-5'-AMP, a nucleoside analog, has been widely employed in exploring the activity of purine nucleoside phosphorylase (PNP) and its role in immune system functionality. Moreover, it maintains immense potential for conducting experiments on T-cell depletion and treating severe ailments like autoimmune diseases and cancer. Synonyms: 8- Azaadenosine- 5'- O- monophosphate. Molecular formula: C9H13N6O7P (free acid). Mole weight: 348.2 (free acid).
8-Aza-7-deaza-2'-deoxyadenosine (4-Amino-1-(2-deoxyribofuranosyl)pyrazolo[3,4-d]-pyrimidine), an extensively researched and scientifically proven potent anticancer drug, demonstrates exceptional efficacy in impeding DNA synthesis and growth of cancer cells. This remarkable compound exhibits impressive results in precisely targeting and inhibiting cancer progression, positioning itself as an invaluable asset within the realm of biomedicine. Grades: ≥ 95%. CAS No. 17318-21-7. Molecular formula: C10H13N5O3. Mole weight: 251.24.
8-Aza-7-deaza-2'-deoxyguanosine
8-Aza-7-deaza-2'-deoxyguanosine, an indispensable component, significantly contributes to the advancement of antiviral pharmaceuticals aimed at countering ailments engendered by DNA viruses, including herpes simplex virus (HSV) and varicella-zoster virus (VZV). Its paramount function lies in impeding viral duplication through the disruption of viral DNA synthesis. Grades: ≥ 95%. CAS No. 100644-70-0. Molecular formula: C10H13N5O4. Mole weight: 267.24.
8-Aza-7-deaza-2'-deoxyguanosine
8-Aza-7-deaza-2'-deoxyguanosine. Group: Biochemicals. Grades: Highly Purified. CAS No. 100644-70-0. Pack Sizes: 5mg, 10mg, 25mg, 50mg, 100mg. Molecular Formula: C10H13N5O4. US Biological Life Sciences.
8-Aza-7-deaza-2'-deoxy-N2-DMF-5'-O-DMT-guanosine 3'-CE phosphoramidite is a remarkably efficient phosphoramidite building block employed in solid-phase research and development, facilitating the generation of modified RNA or DNA oligonucleotides. Through its incorporation, 8-aza-7-deaza modifications are introduced. Synonyms: 5'-Dimethoxytrityl-N-dimethylformamidine-8-aza-7-deaza-2'-deoxyGuanosine, 3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite; 7-Deaza-8-aza-dG-CE Phosphoramidite (PPG). Grades: 95%. CAS No. 500891-26-9. Molecular formula: C43H53N8O7P. Mole weight: 824.91.
8-Aza-7-deaza-A CEP
8-Aza-7-deaza-A CEP is a vital compound used in the biomedical industry. With its unique chemical properties, it plays a crucial role in the synthesis of drugs targeting various diseases. This product is extensively utilized in the research and development of pharmaceuticals aimed at treating cancer, viral infections, and neurological disorders. Molecular formula: C53H66N7O8PSi. Mole weight: 988.19.
8-Aza-7-deaza-A-CE Phosphoramidite
8-Aza-7-deaza-A-CE Phosphoramidite, a chemical compound utilized for oligonucleotide synthesis, is a powerful tool for modifying nucleic acid structures in pharmaceutical applications and gene regulation studies. Its exceptional utility extends to therapeutic strategies in genetic disorders and cancer treatment development. Synonyms: 5'-Dimethoxytrityl-N6-dimethylaminomethylidene-8-aza-7-deaza-Adenosine, 2'-O-TBDMS-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite. Molecular formula: C49H67N8O7PSi. Mole weight: 939.16.