American Chemical Suppliers

A directory of where to buy chemicals in the USA, including: distributors, industrial manufacturers, bulk supplies and wholesalers of raw ingredients & finished goods.

Search for products or services, then visit the suppliers website for prices or more information.

Product
4-Androsten-6β-ol-3,17-dione 4-Androsten-6β-ol-3,17-dione. Uses: Designed for use in research and industrial production. Additional or Alternative Names: (6β)-. Product Category: Steroidal Compounds. CAS No. 63-00-3. Molecular formula: C19H26O3. Mole weight: 302.41. Purity: 95%+. IUPACName: (6R,8R,9S,10R,13S,14S)-6-hydroxy-10,13-dimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthrene-3,17-dione. Canonical SMILES: CC12CCC3C(C1CCC2=O)CC(C4=CC(=O)CCC34C)O. Density: 1.19g/cm³. Product ID: ACM63003. Alfa Chemistry — ISO 9001:2015 Certified. Alfa Chemistry.
4-Androsten-7α-ol-3,17-dione 4-Androsten-7α-ol-3,17-dione. Uses: Designed for use in research and industrial production. Product Category: Steroidal Compounds. CAS No. 62-84-0. Molecular formula: C19H26O3. Mole weight: 302.41. Purity: 95%+. IUPACName: (7R,8R,9S,10R,13S,14S)-7-hydroxy-10,13-dimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthrene-3,17-dione. Canonical SMILES: CC12CCC3C(C1CCC2=O)C(CC4=CC(=O)CCC34C)O. Product ID: ACM62840. Alfa Chemistry — ISO 9001:2015 Certified. Alfa Chemistry. 3
4-Androsten-7β,17β-diol-3-one 4-Androsten-7β,17β-diol-3-one. Uses: Designed for use in research and industrial production. Product Category: Steroidal Compounds. CAS No. 969-13-1. Molecular formula: C19H28O3. Mole weight: 304.42. Purity: 95%+. Product ID: ACM969131. Alfa Chemistry — ISO 9001:2015 Certified. Alfa Chemistry. 2
4-ANDROSTEN-7β, 17β-DIOL-3-ONE 4-ANDROSTEN-7β, 17β-DIOL-3-ONE. Group: Biochemicals. Alternative Names: 7β-HYDROXYTESTOSTERONE. CAS No. 969-13-1. US Biological Life Sciences. USBiological 1
Worldwide
4-Androstene-3,17-dione 4-Androstene-3,17-dione. CAS No. 63-05-8. Product ID: 8-01510. Molecular formula: C19H28O2. Mole weight: 286.41. Purity: ³98%. Reference: Micron , 32, 75, 2001; J. Struct. Biol. , 136, 144, 2001, Methods and Results in Crystallization of Membrane Proteins, S. Iwata, ed., International University Line, La Jolla, 2003. CarboMer Inc
4-Androstene-3,17-dione 5g Pack Size. Group: Bioactive Small Molecules, Building Blocks, Research Organics & Inorganics. Formula: C19H26O2. CAS No. 63-05-8. Prepack ID 15237310-5g. Molecular Weight 286.41. See USA prepack pricing. Molekula Americas
4-Androstene-3,17-dione-2,3,4-13C3 solution 0.1 mg/mL in methanol, 98 atom % 13C, 98% (CP). Group: Fluorescence/luminescence spectroscopy. Alfa Chemistry Analytical Products 3
4-Anhydro-2-O-(2,4-dimethoxybenzoyl)-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-4-thio-D-ribitol 4-Anhydro-2-O-(2,4-dimethoxybenzoyl)-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-4-thio-D-ribitol is a compound used in the biomedical industry for various applications. It exhibits potential in the treatment of certain diseases such as cancer, inflammation, and metabolic disorders. This product acts as a key ingredient or precursor in the synthesis of drugs targeting specific molecular pathways associated with these conditions. Its unique structural features make it a valuable tool in drug development and biomedical research. CAS No. 291758-12-8. BOC Sciences 12
4-Anilino-1,1':4',1''-terphenyl 4-Anilino-1,1':4',1''-terphenyl. Group: Small molecule semiconductor building blockssemiconductor blocks. CAS No. 897671-81-7. Product ID: N-phenyl-4-(4-phenylphenyl)aniline. Molecular formula: 321.4g/mol. Mole weight: C24H19N. C1=CC=C (C=C1)C2=CC=C (C=C2)C3=CC=C (C=C3)NC4=CC=CC=C4. InChI=1S/C24H19N/c1-3-7-19 (8-4-1)20-11-13-21 (14-12-20)22-15-17-24 (18-16-22)25-23-9-5-2-6-10-23/h1-18, 25H. VWXSLLOSYCKNCF-UHFFFAOYSA-N. Alfa Chemistry Materials 5
4-Anilino-1-benzylpiperidine Intermediate in the preparation of Fentanyl derivatives. Group: Biochemicals. Alternative Names: 1-Benzyl-4- (phenylamino) piperidine; 1-Benzyl-4-anilinopiperidine; N-Phenyl-1-(phenylmethyl)-4-piperidinamine; NSC 76613. Grades: Highly Purified. CAS No. 1155-56-2. Pack Sizes: 10mg. US Biological Life Sciences. USBiological 2
Worldwide
4-Anilino-4-oxobutanoic acid 4-Anilino-4-oxobutanoic acid. Group: Biochemicals. Alternative Names: N-Phenyl-succinamic acid; Butanedioic acid anilide; 4-Oxo-4-(phenylamino)-butanoic acid. Grades: Highly Purified. CAS No. 102-14-7. Pack Sizes: 500mg, 1g, 2g, 5g, 10g. Molecular Formula: C10H11NO3. US Biological Life Sciences. USBiological 6
Worldwide
4-Anilinomethylene-pentenedioic Acid-5-methyl Ester-d5 4-Anilinomethylene-pentenedioic Acid-5-methyl Ester-d5. Group: Biochemicals. Grades: Highly Purified. Pack Sizes: 10mg. US Biological Life Sciences. USBiological 1
Worldwide
4-Anisic Acid Anisic Acid. CAS No. 100-09-4. Categories: 4-methoxybenzoic acid; p-anisic acid. Richman Chemical
Pennsylvania PA
4-ANISIDINE-2-SS-HYDROXYETHYL SULFONE SULFATE ESTER 4-ANISIDINE-2-SS-HYDROXYETHYL SULFONE SULFATE ESTER. Uses: Designed for use in research and industrial production. Additional or Alternative Names: 4-ANISIDINE-2-SS-HYDROXYETHYL SULFONE SULFATE ESTER;4-Anisidine-2--hydroxyethyl sulfone sulfate ester;4-ANISIDINE-2-B-HYDROXYETHYLSULFONE SULFATE;2-[(5-Amino-2-methoxyphenyl)-sulfonyl]-ethyl hydrogen sulfate;4-ANISIDINE-2-B-HYDROXYETHYL SULFONE SULFATE E. Product Category: Heterocyclic Organic Compound. CAS No. 52532-52-2. Molecular formula: C9H13NO7S2. Mole weight: 311.334. Purity: 0.96. IUPACName: 2-(5-amino-2-methoxyphenyl)sulfonylethylhydrogensulfate. Canonical SMILES: COC1=C(C=C(C=C1)N)S(=O)(=O)CCOS(=O)(=O)O. Product ID: ACM52532522. Alfa Chemistry — ISO 9001:2015 Certified. Alfa Chemistry. 4
4-Anisyl chlorodiphenyl methane 4-Anisyl chlorodiphenyl methane . Group: Biochemicals. Alternative Names: (Chloro (-methoxyphenyl) methylene) dibenzene; MMT-Cl; 4-Methoxytri phenylchloromethane ; p-Monomethoxytrityl chloride. Grades: Highly Purified. CAS No. 14470-28-1. Pack Sizes: 25g, 50g, 100g, 250g, 500g. Molecular Formula: C20H17ClO. US Biological Life Sciences. USBiological 6
Worldwide
4'-Apo-b-carotenal 4'-Apo-b-carotenal. Group: Biochemicals. Alternative Names: 4'-Apo-b-caroten-4'-al. Grades: Highly Purified. Pack Sizes: 1mg, 2mg, 5mg. US Biological Life Sciences. USBiological 6
Worldwide
4arm-PEG10K Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K 2arm-OH 2arm-COOH average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K 2arm-OH 2arm-COOH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG 2arm-OH 2arm-COOH. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K 2arm-OH 2arm-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG 2arm-OH 2arm-NH2. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K 2arm-OH 2arm-NH2 HCl Salt, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K 3arm-OH 1arm-COOH average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K 3arm-OH 1arm-COOH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG 3arm-OH 1arm-COOH. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K 3arm-OH 1arm-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG 3arm-OH 1arm-NH2. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K 3arm-OH 1arm-NH2 HCl Salt, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Acrylate average Mn 10,000. Group: Synthetic polymers for 3d printing. Alfa Chemistry Analytical Products 2
4arm-PEG10K-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: 3d printing materials poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Acrylate, 4arm-PEG-ACLT. Molecular formula: average Mn 10000. Alfa Chemistry Materials 6
4arm-PEG10K-COOH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-COOH, 4arm-PEG-Carboxyl. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-COOH average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Glutaric Acid pentaerythritol core, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Glutaric Acid Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Glutaric Acid. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Isocyanate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Isocyanate average Mn 10000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Maleimide average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Maleimide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-MAL, 4arm-PEG-Maleimide. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-NH2, 4arm-PEG-NH2. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-NH2 pentaerythritol core, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-SH pentaerythritol core, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-SH. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Succinimidyl Carboxymethyl Ester Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Carboxymethyl Ester, 4arm-PEG-SCM. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Succinimidyl Carboxymethyl Ester average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Succinimidyl Carboxymethyl Glutaramide average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Succinimidyl Carboxymethyl Glutaramide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Carboxymethyl Glutaramide. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Succinimidyl Glutarate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Glutarate. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Succinimidyl Glutarate pentaerythritol core, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Succinimidyl Succinate pentaerythritol core, average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG10K-Succinimidyl Succinate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Succinate. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Vinylsulfone Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-VS, 4arm-PEG-Vinylsulfone. Molecular formula: average Mn 10000. Alfa Chemistry Materials 5
4arm-PEG10K-Vinylsulfone average Mn 10,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K 2arm-OH, 2arm-NH2 HCl Salt, average Mn 20000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K 2arm-OH, 2arm-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K 3arm-OH, 1arm-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K 3arm-OH, 1arm-NH2 HCl Salt, average Mn 20000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-Acrylate average Mn 20,000. Group: Synthetic polymers for 3d printing. Alfa Chemistry Analytical Products 2
4arm-PEG20K-Acrylate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: 3d printing materials poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Acrylate, 4arm-PEG-ACLT. Molecular formula: average Mn 20000. Alfa Chemistry Materials 6
4arm-PEG20K-COOH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-COOH, 4arm-PEG-Carboxyl. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-COOH average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-Isocyanate average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-Isocyanate Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Isocyanate. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-Maleimide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-MAL, 4arm-PEG-Maleimide. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-Maleimide average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-NH2 HCl Salt, average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-NH2 Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-NH2, 4arm-PEG-amine. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-SH Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-SH. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-SH average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-Succinimidyl Carboxymethyl Ester average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4
4arm-PEG20K-Succinimidyl Carboxymethyl Ester Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-Succinimidyl Carboxymethyl Glutaramide Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: 4arm-PEG-Succinimidyl Carboxymethyl Glutaramide. Molecular formula: average Mn 20000. Alfa Chemistry Materials 5
4arm-PEG20K-Succinimidyl Carboxymethyl Glutaramide average Mn 20,000. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alfa Chemistry Analytical Products 4

Would you like to list your products on USA Chemical Suppliers?

Our database is helping our users find suppliers everyday.

Add Your Products